a2 United States Patent

Ni et al.

US009189735B2

US 9,189,735 B2
Nov. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SPARSE CLASS REPRESENTATION WITH
LINEAR PROGRAMMING

(71)

(72)

(73)

")

@
(22)

(65)

(1)
(52)

(58)

Applicant:

Massachusetts Institute of Technology,
Cambridge, MA (US)

Inventors: Karl Ni, Palo Alto, CA (US); Katherine
L. Bouman, W. Lafayette, IN (US);
Nadya T. Bliss, Scottsdale, AZ (US)

Assignee: MASSACHUSETTS INSTITUTE OF
TECHNOLOGY, Cambridge, MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 286 days.

Appl. No.: 13/716,940

Filed: Dec. 17, 2012

Prior Publication Data

US 2014/0172764 Al Jun. 19, 2014

Int. CL.

GO6N 5/02 (2006.01)

U.S. CL

CPC e GO6N 5/02 (2013.01)

Field of Classification Search

None

See application file for complete search history.

"\

(56) References Cited

PUBLICATIONS

Stéphane Girard et al., Modelling and Inference of Complex and
Structured Stochastic Systems, 2006, INRIA (French Institute for
Research in Computer Science and Automation), http://raweb.inria.
fr/rapportsactivite/RA2006/mistis/mistis.pdf.*

Manuel Lameiras Campagnolo et al., Contextual classification of
remotely sensed images with integer linear programming (Extended
Abstract), 2007, http://www.isa.utl.pt/matapl/abstracts/abstract02__
06.pdf.*

Yixin Chen , MILES: Multiple-Instance Learning via Embedded
Instance Selection , Oct. 30, 2006 , Pattern Analysis and Machine
Intelligence, IEEE Transactions on (vol. 28 , Issue: 12), http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1717454
&tag=1.*

* cited by examiner

Primary Examiner — Kakali Chaki

Assistant Examiner — Viker Lamardo

(74) Attorney, Agent, or Firm — Anderson Gorecki &
Rouille LLP

(57) ABSTRACT

A method, apparatus and computer program product for pro-
viding sparse class representation with linear programming is
provided. A first model is built using a positive data set. A
second model is built using a negative data set. Linear pro-
gramming is used to distinguishing the first model from the
second model to determine a set of salient features for a filter
for use as an image classifier.

20 Claims, 7 Drawing Sheets

12

BUILDING A FIRST MODEL USING A POSITIVE DATA SET

THE FIRST DATA SET IS CONSIDERED MINIMALLY
SUPERVISED WHEREIN THE POSITIVE DATA SET INCLUDES
IMAGES HAVING THE OBJECT WHEREIN THE OBJECT IS
NOT IDENTIFIED IN THE IMAGES

)

!

BUILDING A SECOND MODEL USING A NEGATIVE DATA SET

I/—18

18

argmin
[

USING LINEAR PROGRAMMING, DISTINGUISHING THE
FIRST MODEL FROM THE SECOND MODEL TO DETERMINE A
SET OF SALIENT FEATURES FOR A FILTER FOR USE AS AN

IMAGE CLASSIFIER
USING THE MINIMIZATION FORMULA
—r(XTER)
WHERE XIS A COLLECTION OF VECTORS FROM A DATA

SOURCE, YIS A COLLECTION OF FEATURES, AND B IS A
SELECTOR MATRIX OF FEATURES IN X

//—20

USING A FIRST CONSTRAINT >t
0

A3 PART OF THE MINIMIZATION FORMULA, WHERE), IS A d
TUNING PARAMETER FOR REDUCING REDUNDANCY BY
INDUCING SPARSITY

A VALUE FOR A IS BASED ON AT LEAST ONE OF THE A

GROUP CONSISTING OF EXPECTED CLUSTERING 1

STRUCTURE, INHERENT FEATURE SIMILARITY, AND A
SIZE OF THE DATA SET

/—22

/—24

, USING A SECOND CONSTRAINT
0< B, sS4, 51,

Y

/—25

usiNG gry_1.

!

L USING THE FILTER TO RECOGNIZE IMAGE CONTENT IN AN
IMAGE

Y

U.S. Patent Nov. 17, 2015 Sheet 1 of 7 US 9,189,735 B2

g 10 15 20 25 3w 40 45 A0

FIGURE 14

5 10 15 20 25 30 35 40 45 50

FIGURE 1B

U.S. Patent Nov. 17, 2015 Sheet 2 of 7 US 9,189,735 B2

1}

FIGURE 2A4

FIGURE 2B

U.S. Patent Nov. 17, 2015 Sheet 3 of 7 US 9,189,735 B2

FIGURE 34

U.S. Patent Nov. 17, 2015 Sheet 4 of 7 US 9,189,735 B2

FIGURE 3B

US 9,189,735 B2

Sheet S of 7

Nov. 17, 2015

U.S. Patent

FIGURE 3C

U.S. Patent Nov. 17, 2015 Sheet 6 of 7 US 9,189,735 B2

10 —\
BUILDING A FIRST MODEL USING A POSITIVE DATA SET

THE FIRST DATA SET IS CONSIDERED MINIMALLY

SUPERVISED WHEREIN THE POSITIVE DATA SET INCLUDES |/

IMAGES HAVING THE OBJECT WHEREIN THE OBJECT IS
NOT IDENTIFIED IN THE IMAGES

=h
H

)

A
BUILDING A SECOND MODEL USING A NEGATIVE DATA SET

==
(-]

1

USING LINEAR PROGRAMMING, DISTINGUISHING THE
FIRST MODEL FROM THE SECOND MODEL TO DETERMINE A
SET OF SALIENT FEATURES FOR A FILTER FOR USE AS AN

IMAGE CLASSIFIER
USING THE MINIMIZATION FORMULA

argmin —r(XTYH) / 20
£

WHERE XIS A COLLECTION OF VECTORS FROM A DATA
SOURCE, YIS A COLLECTION OF FEATURES, ANDB IS A
SELECTOR MATRIX OF FEATURES IN X

N
N

USING A FIRST CONSTRAINT ;57
i

AS PART OF THE MINIMIZATION FORMULA, WHERE A IS A d
TUNING PARAMETER FOR REDUCING REDUNDANCY BY
INDUCING SPARSITY

A VALUE FOR) IS BASED ON AT LEAST ONE OF THE L/

GROUP CONSISTING OF EXPECTED CLUSTERING L

STRUCTURE, INHERENT FEATURE SIMILARITY, AND A
SIZE OF THE DATA SET

Y)

y— 26
USING A SECOND CONSTRAINT /
0<pB, <t <1, 28
USING ﬂrl =1.

A

USING THE FILTER TO RECOGNIZE IMAGE CONTENT IN AN
IMAGE

)

FIGURE 4

U.S. Patent

=
o

Nov. 17,2015 Sheet 7 of 7
'l N\
130

A S

C J
110 114
COMPUTER 1/0 INTERFACE
SYSTEM
111 —|
112 113

MEMORY PROCESSOR
140-1 140-2

Sparse class

Application

representation

Sparse class

representation

Process

115
COMMUNICATIONS
INTERFACE

Figure 5

US 9,189,735 B2

116

108

US 9,189,735 B2

1
SPARSE CLASS REPRESENTATION WITH
LINEAR PROGRAMMING

BACKGROUND

Image classification is a classical computer vision problem
with applications to semantic image annotation, querying,
and indexing. There are numerous applications that require
classifiers to recognize image content, the most prominent
being labeling and retrieving images semantically. Tradi-
tional training and classification procedures, for the most
part, rely on two components: feature extraction and match-
ing. Focus on either component has merited large efforts. To
ensure relevant and accurate features, research has been con-
ducted into improving the training data fidelity and segmen-
tation truth in Torralba’s LABELME®, the now-retired
GOOGLE® labels, and most face/object detection/recogni-
tion training sets. Meanwhile, traditional approaches in
matching/classification assume the supervised “one-versus-
all” semantic labeling framework, which includes individual
object detectors.

Linear programming is a mathematical method for deter-
mining a way to achieve a best outcome (such as maximum
profit or lowest cost) in a given mathematical model for some
list of requirements represented as linear relationships. Lin-
ear programming is a specific case of mathematical program-
ming (mathematical optimization). More formally, linear
programming is a technique for the optimization of a linear
objective function, subject to linear equality and linear
inequality constraints.

Linear programming can be applied to various fields of
study. It is used in business and economics, but can also be
utilized for engineering problems. Industries that use linear
programming models include transportation, energy, tele-
communications, and manufacturing. It has proved useful in
modeling diverse types of problems in planning, routing,
scheduling, assignment, and design.

SUMMARY

Computer vision as well as statistical and machine learning
algorithms depend on a training set to use as reference when
inferring relationships between extracted features in a query.
Therefore, to compare a query (image) to a reference training
set, learning algorithms almost universally attempt to solve
two problems. The first problem is the extraction of useful and
salient features. The second problem is the matching of fea-
tures to make inferences and decision.

In organizing extracted features for ease of matching,
recent techniques for image classification approach the prob-
lem generatively, assume Gaussianity, rely on distance met-
rics, and estimate distributions, but are unfortunately not con-
vex nor scalable. Other conventional mechanisms suffer from
a variety of deficiencies. The present invention approaches
the problem with convex linear programming using similarity
metrics rather than commonly-used Mahalanobis distances.
It does not rely on distributions and does not suffer from the
difficulties conventional approaches may face. Specifically,
the problem is solved through a hybrid iterative method that
takes advantage of optimization space properties. The opti-
mization problem exclusively uses dot products in the feature
space, and therefore can be extended to non-linear kernel
functions in the transductive setting. That is to say, we can use
any similarity function (no matter how nonlinear) so long as
it is symmetric and positive definite. When attempting to
classify a query, we simply use a nearest matched filter cor-
relation.

10

15

20

25

30

35

40

45

50

55

60

65

2

Both feature extraction and matching require low noise
levels in the training data, and therefore, significant manual
involvement in either labeling or segmentation. Moreover,
extensive cross-validation procedures are required to drive
down false alarms. Finally, there may be multiple instances of
a single concept. This has inspired a push towards multi-
instance, unsupervised learning in which the proposed meth-
odology is grouped. The paradigm reflects the law of large
numbers, where with enough quantity, where current data
rates and accessibility are outpacing processing capabilities,
training quality can be improved naturally through noise inte-
gration.

Algorithms must therefore address two problems with
unsupervised approaches. First, researchers must have large
and expansive training to capture all instances of a concept in
any situation or environment. Second, with large training sets,
systems must exhibit efficiency and scalability, and they must
do so autonomously. Unsupervised systems often turn to one
of'the most mature and successful techniques with parameter
estimates of multi-modal Gaussian Mixture Models
(GMM’s). Under correct choices in the number of clusters,
assumptions on noise behavior, and good initialization,
GMMs are efficient and informative. Unfortunately, without
these conditions, maximum likelihood parameter estimates
through expectation maximization (EM, ak.a, iterative
annealing) will produce irrecoverable and incorrect feature
prototypes. Furthermore, GMMs have small sample bias and
are often instable with respect to parameterization. Subse-
quently, iteratively determined optimal values are sensitive to
initialization. Online or incremental clustering is also limited
through EM and may require respecification of variables. The
problem is augmented by the number of parameters to be
updated, which significantly impacts the objective function.
Finally, convergence speed depends on dimensionality as
GMMs and similar techniques traditionally (and logically)
utilize difference metrics, often the Mahalanobis distance.

Instead of modeling the representation generatively, pro-
totype features for comparing images are determined directly
by finding a small subset through sparsity constraints in a
linear programming (L.P) problem. The resultant system clas-
sifier relies on normalized cross-correlation (similarity)
between features derived from a query image and the trained
subset of prototypes, and performs well. The methodology
fits well with common semantic classification frameworks in
image processing problems.

Embodiments of the invention significantly overcome such
deficiencies and provide mechanisms and techniques that
provide a sparse class representation with linear program-
ming. Linear programming is used to determine set of salient
features that make the object stand apart from rest of image
data (noise). The process is considered minimally supervised
in the sense that a set of images are provided that have the
object without specitying where that object is in the image
and a set of data is provided that doesn’t have the object.
Stated differently, the presently described method involves
taking in a training set of the object being searched for (posi-
tive set) and a training set of things not being searched for
(negative set) and from these sets finding a best description
(salient features) of the object you are looking for.

For example, if the object being searched for is a loaf of
bread, a group of images are provided that each includes a loaf
of bread (referred to herein as a positive data set). A second
group of images is provided that doesn’t include a loaf of
bread (referred to herein as a negative data set). A model is
built from the positive data set and a model is built from the
negative data set. Linear programming problem optimization
is used to come up with the difference between models,

US 9,189,735 B2

3

referred to as a filter. This filter can be applied to a new image
to determine if the new image contains a loaf of bread. While
the present invention is described with respect to video
images, it is not intended to be limited to only video images
and is also applicable to data sets regarding audio signals,
text, and the like.

In a particular embodiment of a method for providing a
sparse class representation with linear programming, the
method includes building a first model using a positive data
set and building a second model using a negative data set. The
method further includes using linear programming to distin-
guishing the first model from the second model to determine
a set of salient features for a filter for use as an image classi-
fier.

Other embodiments include a computer readable medium
having computer readable code thereon for providing a sparse
class representation with linear programming. The computer
readable medium includes instructions for building a first
model using a positive data set and building a second model
using a negative data set. The computer readable medium
further includes instructions for using linear programming to
distinguishing the first model from the second model to deter-
mine a set of salient features for a filter for use as an image
classifier.

Still other embodiments include a computerized device,
configured to process all the method operations disclosed
herein as embodiments of the invention. In such embodi-
ments, the computerized device includes a memory system, a
processor, communications interface in an interconnection
mechanism connecting these components. The memory sys-
tem is encoded with a process that provides sparse class
representation with linear programming as explained herein
that when performed (e.g. when executing) on the processor,
operates as explained herein within the computerized device
to perform all of the method embodiments and operations
explained herein as embodiments of the invention. Thus any
computerized device that performs or is programmed to per-
form up processing explained herein is an embodiment of the
invention.

Other arrangements of embodiments of the invention that
are disclosed herein include software programs to perform
the method embodiment steps and operations summarized
above and disclosed in detail below. More particularly, a
computer program product is one embodiment that has a
computer-readable medium including computer program
logic encoded thereon that when performed in a computer-
ized device provides associated operations providing sparse
class representation with linear programming as explained
herein. The computer program logic, when executed on at
least one processor with a computing system, causes the
processor to perform the operations (e.g., the methods) indi-
cated herein as embodiments of the invention. Such arrange-
ments of the invention are typically provided as software,
code and/or other data structures arranged or encoded on a
computer readable medium such as an optical medium (e.g.,
CD-ROM), floppy or hard disk or other a medium such as
firmware or microcode in one or more ROM or RAM or
PROM chips or as an Application Specific Integrated Circuit
(ASIC) or as downloadable software images in one or more
modules, shared libraries, etc. The software or firmware or
other such configurations can be installed onto a computer-
ized device to cause one or more processors in the comput-
erized device to perform the techniques explained herein as
embodiments of the invention. Software processes that oper-
ate in a collection of computerized devices, such as in a group
of data communications devices or other entities can also
provide the system of the invention. The system of the inven-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion can be distributed between many software processes on
several data communications devices, or all processes could
run on a small set of dedicated computers or on one computer
alone.

Itis to be understood that the embodiments of the invention
can be embodied strictly as a software program, as software
and hardware, or as hardware and/or circuitry alone.

Note that each of the different features, techniques, con-
figurations, etc. discussed in this disclosure can be executed
independently or in combination. Accordingly, the present
invention can be embodied and viewed in many different
ways. Also, note that this summary section herein does not
specify every embodiment and/or incrementally novel aspect
of the present disclosure or claimed invention. Instead, this
summary only provides a preliminary discussion of different
embodiments and corresponding points of novelty over con-
ventional techniques. For additional details, elements, and/or
possible perspectives (permutations) of the invention, the
reader is directed to the Detailed Description section and
corresponding figures of the present disclosure as further
discussed below.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of preferred embodiments of the inven-
tion, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating the principles
of the invention.

FIG. 1A is a graph showing a 1,-norm minimization;

FIG. 1B is a graph showing the 1, -norm minimization of a
collection of 1,-norms on the columns of f3;

FIG. 2A shows an image of a scene;

FIG. 2B shows a prototype identifying different portions of
the image of FIG. 2A;

FIG. 3A shows an image of a crowd of people;

FIG. 3B shows a classification including faces for the
image of FIG. 3A;

FIG. 3C shows the faces of FIG. 3B overlaid on the original
image of FIG. 3A;

FIG. 4 depicts a flow diagram of a particular embodiment
of' a method for providing sparse class representation with
linear programming in accordance with embodiment of the
invention; and

FIG. 5 illustrates an example computer system architecture
for a computer system that provides providing sparse class
representation with linear programming in accordance with
embodiments of the invention.

DETAILED DESCRIPTION

The embodiments set forth below represent the necessary
information to enable those skilled in the art to practice the
invention and illustrate the best mode of practicing embodi-
ments of the invention. Upon reading the following descrip-
tion in light of the accompanying figures, those skilled in the
art will understand the concepts of the invention and recog-
nize applications of these concepts not particularly addressed
herein. It should be understood that these concepts and appli-
cations fall within the scope of the disclosure and the accom-
panying claims.

The preferred embodiment of the invention will now be
described with reference to the accompanying drawings. The
invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi-

US 9,189,735 B2

5

ment set forth herein; rather, this embodiment is provided so
that this disclosure will be thorough and complete, and will
fully convey the scope of the invention to those skilled in the
art. The terminology used in the detailed description of the
particular embodiment illustrated in the accompanying draw-
ings is not intended to be limiting of the invention. In the
drawings, like numbers refer to like elements.

The goal of pattern classification in the traditional statisti-
cal and machine learning framework is to characterize classes
so that input features can be readily recognized in the pres-
ence of noise. Model selection techniques and comparison
metrics are important considerations in representing classes
with robust, discriminant features. This work assumes corre-
lation-based similarity metrics. With this assumption, an opti-
mization problem is proposed to obtain the sparsest yet most
salient set of features as a representation for any class.

Like most learning algorithms, the proposed work requires
training. As data rates and accessibility are outpacing pro-
cessing capabilities, significant efforts must be (and have
been) made to develop tools to improve automation. Tech-
niques to reduce supervision include clustering, feature selec-
tion, k-means, Markov random walk methods, quality thresh-
olding, and GMMs. Instead of modeling the sparse
representation, the idea is to find sparsity directly, and to
obtain sparse representations of classes through linear pro-
gramming (LP) and an L.P approximate. Using similarity (i.e.,
correlation) rather than difference metrics (e.g., Mahalonobis
distances in GMMs), matched filters are used to classity, a
concept that has been studied extensively in “nearest neigh-
bor” frameworks and reflects a distinctly signal processing
approach that under normalization, performs the same as its
difference metric counterparts. Hence, the optimal filters that
are most representative of a class “basis feature set” yet least
redundant while addressing the computational load for large
datasets are found. To extend the proposed algorithm into
practice, we discuss analogous concepts, such as hierarchical
clustering and linear discriminant analysis that are present in
generative methods.

For most learning frameworks, an instance x is classified
by comparing to prototypes or probabilistic models to deter-
mine the likeliest solution based on a distribution in some
feature space. That is, the feature vector x belongs to class i of
C classes if it is closest to the prototypes in the set {y };
characterizing the i” class. Take a simplistic view of classifi-
cation in GMMs, where each mixture component relates to a
single class:

argmax Kexp[(x — y‘-)Tzfl(X =)l (0

iefl,...,C}

@

; Ty-1 2
= argmin —2x X7y +yillz-r -
iell,....C}

Solutions to Equation (2) are the same as equation (1); that
is, the classification of an input x relies on the Mahalanobis
distance to all class prototypes. It is not uncommon to nor-
malize Y,”t~'y, to a scalar value (say unity) for every class,
though feature vectors are constrained to the unit ellipse (or
ball, depending on X). Normalized class representations can
be found in many applications in biological datasets, image
processing applications, detection-theory, etc., where a signal
processing paradigm places significant emphasis on the rela-
tionship between feature dimensions rather than the actual
values themselves. For example, pre-processing in images for
computer vision-based applications often involves DC sub-
traction and division by pixel variance.

10

15

20

25

35

50

55

60

65

6

Under such an assumption, equation (2) can be written as
the dot product of x and y;:

argmax 3

ie(l,... ,C}

<X, yi >

This is an important result because the classifier is broken
down to a simple cross-correlation between x and y, where
v,E{¥,, Vs - - - Yo} €ach vector a known prototype of a given
class. The process of matching x with a bank of filters is
frequently called categorization by matched filters, where the
Cover and Hart inequality holds,

C
R* < R= RTT?,

where R* is the Bayes error rate.

Training a Sparse Classifier

The features y, are used as templates, and class covariance
matrix is relied upon, as is natural when using similarity
metrics. The following describes methodologies in analyzing
the covariance matrix to produce matched filters for classifi-
cation, optimal both in representation space and discrimina-
tion space.

Within Class Filter Optimization

Let X be the collection of vectors x, &R, from a data source
andY be another matrix collection of y x &R features, where
d is the dimensionality of the feature space. For M and N data
points, XER“™ and YER. The representation problem
can be framed as determining a best set of vectors in Y to
represent X. Because class representations over large quanti-
ties of data will likely be deeply redundant in structure, we
assume that X7Y is inherently low-rank (or, at least, has
disproportionately distributed singular values.) Therefore, a
class could be efficiently represented by building a very small
set of correlation filters that still captures the diversity
between features.

As a side note, within a single class, ideally, one would
draw X andY from the same data source, i.e. X=Y. (In similar
problems, |[YZYP| is frequently optimized over B in eigen
decompositions.) In our case, discussions on complexity and
hierarchical clustering will make it clear as to why we gen-
eralize to X=Y.

Every x, can be clustered into bins defined by a single y, and
it is desirable to have the fewest y €Y to accommodate all x,.
A selection matrix BE{0,1}* is defined, where each {3,
column “chooses” a feature in Y. The decision criteria of
whether or not 8, =1 depends on the correlation between the
class vector y; with the individual feature x, (i.e., quality of
representation) and simultaneously, the cardinality of the
subset that collectively represents X (i.e., sparsest basis set).
This can be expressed as:

argmax tr(XTYﬁ)+/\-||ﬁ1||§ (&)
B

such that B €{0,1} and gT1=1

Here 1 is a vector of a all I’s, and A is a tuning parameter.
The trace maximation over f3 selects the y, &Y that maximizes
the correlation with X. The 1, norm maximization translates to
minimizing rank, and hence, maximizing row-sparsity, under
the regularization constraint that f“1=1, which enforces a
singley, for every x,. (Intuition behind maximizing an1, norm

US 9,189,735 B2

7

of'alll; terms is the converse of the Group LASSO concept,
where an 1, norm of a collection of 1, terms is minimized.)

Unfortunately, 1, norm maximization over a convex set is
NP-hard even though KKT conditions still apply. Moreover
restrictions on f3; as a logical variable suggest a 0-1/binary
integer programming problem (also NP-hard, specifically
O(M™)), which is neither the case nor sensibly implemented.

Rather, compressed sensing techniques study a variety of
convex optimization formulations, where a grouping struc-
ture can emerge from sparsity inducing penalty functions,
pA(P). The literature on group organization techniques in this
context has grown in the past few years, where popular
choices of pA(p) include the SCAD function, the sum ofhinge
losses, group Lasso penalization. and the F co norm to name a
few. Many of these loss functions will work, but the infinity
norm has been shown to be particularly effective in the pres-
ence of noise, and is attractive in this linear programming
framework over more prohibitively expensive algorithms.
Hence, we propose infinity norm minimization in the follow-
ing form:

5
argmin —o(XTYA) +A- Y, ®)
i
such that D=<pBj=n=1
and A1=1

The objective function’s second term and the first con-
straint in equation (5) contain the infinity norm regularization
over the rows of [, where minimizing the sum of t, values
induces row sparsity. Also included in this constraint is
0=f,=1, the LP relaxation over the convex polytope (half-
hypercube).

Asymptotic Consistency

The infinity norm regularization in the proposed optimiza-
tionrelies on naturally clustered events, where X, is not unique
within X, suggesting inconsistent (and initialization-depen-
dent) f estimators. For example, take X(§)=Y+& where § is
additive noise. If Y contains several instances of the same
vector, then f§ can represent X (§)
with any y, where [is the estimated solution. Or, it can
represent all of them in the unlikely event that X(E)7Y=II"
with A improperly chosen. This scenario is rare for suffi-
ciently large A, since the 1, -norm of'1.-norms tends toward a
single selector value as opposed to the 2-norm.

However, there are sufficient conditions for asymptotic
consistency, which may not necessarily satisfy ||B—B||2:0p(l),
but may guarantee properties about the grouping of features
for a given A and the total number of clusters C(A). Under our
penalization in equation (5), f promotes a unique and consis-
tent grouping, namely that rank (B,)=1, with {3, being a sub-
matrix of § for group g. Therefore, the number of clusters
C()) equals rank ().

This is further evident when it is observed that the eigen-
value distribution since the i eigenvalue is in {0,1} for all
i€[0, min(M, N)] (a byproduct of the constraint BZ1=1).
Because eigenvectors relate directly to some column in 3, the
rank will be precisely the number of classes. Thus
trace(B)=C(\).

The proof of consistent grouping extends analysis in equa-
tion (5) on equation (3) assuming noise £ in X(E)7YP. The
strategy first assumes 3%, satisfies the KKT conditions. Then,
if f; and f,, are features in group g, B, is a solution if and
only if B*=f,,,. This, of course, satisfies the three optimal
cases:

10

20

25

35

40

45

55

By =By — 1 ‘ L)
& feature x; is selected
Bi)j = By = 0
By =By — 1 2)
< feature x;.; is selected
B = Birayrny = 0
3)

Bjj = Bjj — 2
& both x; and x;,; are chosen.

Birij = Bl jri) = z

Likewise, if f&g, and f_ &g, then B, ,EV (Bc,) the
nullspace of any vector that could select a feature in f,,.

Between Class Filter Optimization

Clustering for each class will naturally yield similar recur-
rent fillers among classes that. while representative of a por-
tion of a single class, are not discriminative between them.
For example, one will often find that a large portion of most
images contain the sky. This is true whether or not one wishes
to differentiate between images of, say, mountains or build-
ings, two completely unrelated concepts that happen to share
a similar feature in the images. Analogously, the discriminat-
ing power in “sky features”, which the within feature optimi-
zation will invariably produce, will be low because
P(mountainlsky) and P(buildings|sky) values are small.

Deletion of similar filters is then a logical step, and the
choices of which filters to remove are simply those with high
correlation occurring across a pair of classes. The class
sample covariance matrix of the reduced set of features from
above, should, in theory, relate one-to-one if steps in equation
(5) were conducted correctly, and thresholdt,,.,, is defined for
features that are to be kept.

Let X” =X and Y? =Y be the collection of within-class
representative features for classes ¢, and c,, respectively,
where x,EX®, ijY(’). The final set of pair-wise between-
class filters discriminating c; and c, is:

(O]
{(fa - f2)t = {(Xi, yik (mgx X‘Tyj] < fkeep}

Yj

Hierarchical Filters

Hierarchical methods are especially useful for groupings
that may appear different in different situations. Filter hier-
archies address scenarios where groupings reflect some
semantic organization. Image patch-based clustering of
objects taken at several angles, times of days, etc., may appear
different for each instance. Furthermore, mixture hierarchies
are useful for complexity reasons because of reliance on the
covariance matrix, where memory can grow according to M
N. Since the proposed algorithm aims to remove redundancy,
we prune especially large data sets (M and Non the order of
millions) to a few relevant features to take advantage of cen-
tral limit behavior, a property enabling one to automatically
segment images without explicitly specifying boundaries.

Hierarchical training operates over several data subsets
(e.g., images), effectively partitioning the class data. Optimi-
zation is done over each subset, and then between each subset.
Irrelevant features (noise) will occur infrequently while class
features will arise; normalization will asymptotically inte-
grate noise to zero in distribution. The procedure is, then, to
first find f§ in data subsets and between data subset. After this
optimization, the rows of [corresponding to the highest
frequency features relate to class structure.

US 9,189,735 B2

9

On Complexity and Implementation

Aside from the calculation of the covariance matrix, the
optimization problem is wholly independent of feature
dimensionality. Computational load on the linear program-
ming problem (specifically polytope containment) is driven
by the number of constraints proportional to the number of
data points squared. Unfortunately, depending on the choice
of descent algorithm, the worst case complexity can be expo-
nential time (simplex method), though there are ways to
achieve strongly polynomial time.

The nature of class representation doesn’t mandate exact
feature solutions (here it is simply an average over clusters
after the feature selection process finishes, anyway), and
some freedom is afforded to approximate the best solution
without finishing the LP. A simple single pass through the
covariance matrix approximates the final solution.

Algorithmically, initialize the i column B; to first select
the row of the maximum covariance matrix entry, i.e. max
xiTyj. Then, we iterate j from 1 to M (the entire covariance
matrix), and flip the state of f3; to optimize the objective in
equation (5), leaving the previous j—1 columns unchanged.
Analogously, the intuition is to choose the best starting point
(the solution when A=0), and then to test the corners of the
hypercube systematically and only once, an O(MN) solution.

Results

Unlike GMMs, linear sparse approximation avoids having
to choose the number of clusters. The tradeoffis manifested in
sensitivity to A. The choice of A is based on expected cluster-
ing structure, inherent feature similarity, and the size of the
data set. The advantages in clustering can be seen in FIGS. 2A
and 2B. Training these algorithms take roughly a day, while
GMMs will cluster on the order of weeks in parallelized
MATLARB on a cluster of 64 cores.

To show proof of concept, training images of semantically
labeled images were taken from the Corel data set. The fea-
ture set is taken from the top 8x8 block-based DCT coeffi-
cients over three color channels in zigzag scan order. Without
segmentation, the results are shown in FIGS. 2A, 2B, 3A, 3B
and 3C. The algorithm naturally performs well on texture,
where features favor an ensemble statistical representation of
what things look like on average over specific features
(though this is feasible with large enough training sets.)
Hence, applications pertaining to geo-localization are pos-
sible.

A sparse data representation procedure has been presented
that can determine prototypes quickly and efficiently. This
representation can be used for clustering. classification, and
feature selection with the advantages of fast matched filter-
ing. The algorithm has several contributions including: an
approximation to the LP relaxation solves an optimization
problem to obtain representative features; class prototypes
based on their covariance matrix are sparse and can be tuned
with a A parameter; filter hierarchies can be built and similar
filters between classes can be removed; and results generalize
well to several data sets.

A flow chart of a particular embodiment of the presently
disclosed method is depicted in FIG. 4. The rectangular ele-
ments are herein denoted “processing blocks” and represent
computer software instructions or groups of instructions.
Alternatively, the processing blocks represent steps per-
formed by functionally equivalent circuits such as a digital
signal processor circuit or an application specific integrated
circuit (ASIC). The flow diagrams do not depict the syntax of
any particular programming language. Rather, the flow dia-
grams illustrate the functional information one of ordinary
skill in the art requires to fabricate circuits or to generate
computer software to perform the processing required in

10

15

20

25

30

35

40

45

50

55

60

65

10

accordance with the present invention. It should be noted that
many routine program elements, such as initialization of
loops and variables and the use of temporary variables are not
shown. It will be appreciated by those of ordinary skill in the
art that unless otherwise indicated herein, the particular
sequence of steps described is illustrative only and can be
varied without departing from the spirit of the invention.
Thus, unless otherwise stated the steps described below are
unordered meaning that, when possible, the steps can be
performed in any convenient or desirable order.

Referring to FIG. 4, a particular embodiment of a method
10 for providing sparse class representation with linear pro-
gramming is shown. Method 10 begins with processing block
12 which discloses building a first model using a positive data
set. As shown in processing block 14 the positive data set is
considered minimally supervised wherein the positive data
set includes images having the object wherein the object is not
identified in the images.

Processing block 16 states building a second model using a
negative data set. The negative data set contains images that
do not have the object in them.

Processing block 18 recites using linear programming, dis-
tinguishing the first model from the second model to deter-
mine a set of salient features for a filter for use as an image
classifier. As shown in processing block 20, the using linear
programming comprises using the minimization formula

argmin —{(X7 YB)
B

where X is a collection of vectors from a data source, Y is a
collection of features, and f} is a selector matrix of features in
X. Processing block 22 recites using linear programming
further comprises using a first constraint

/\Z I

i

as part of the minimization formula, where A is a tuning
parameter for reducing redundancy by inducing sparsity. As
shown in processing block 24 a value for A is based on at least
one of the group consisting of expected clustering structure,
inherent feature similarity, and a size of the data set. Process-
ing block 26 discloses the using linear programming further
comprises using a second constraint 0=f3,<t,<1. As further
shown in processing block 28 the using a second constraint
further comprises using

pr1=1.

Processing block 30 states using the filter to recognize
image content in an image. Having developed a filter (or a
class of filters) the filter(s) can be used to determine the
presence of the object in a new set of images. While the
present invention is described with respect to video images, it
is not intended to be limited to only video images and is also
applicable to data sets regarding audio signals, text, and the
like.

FIG. 5 is a block diagram illustrating example architecture
of a computer system 110 that executes, runs, interprets,
operates or otherwise performs a sparse class representation
operating application 140-1 and sparse class representation
operating process 140-2 suitable for use in explaining
example configurations disclosed herein. The computer sys-
tem 110 may be any type of computerized device such as a

US 9,189,735 B2

11

personal computer, workstation, portable computing device,
console, laptop, network terminal or the like. An input device
116 (e.g., one or more customer/developer controlled devices
such as a keyboard, mouse, etc.) couples to processor 113
through /O interface 114, and enables a customer 108 to
provide input commands, and generally control the graphical
customer interface 160 that the sparse class representation
operating application 140-1 and process 140-2 provides on
the display 130. Essentially, the graphical user interface 160
is where the customer 108-1 performs their ‘online banking’,
specifying which bills are to be paid electronically, when
those bills are to be paid, and the amount to be paid. As shown
in this example, the computer system 110 includes an inter-
connection mechanism 111 such as a data bus or other cir-
cuitry that couples a memory system 112, a processor 113, an
input/output interface 114, and a communications interface
115. The communications interface 115 enables the computer
system 110 to communicate with other devices (i.e., other
computers) on a network (not shown).

The memory system 112 is any type of computer readable
medium, and in this example, is encoded with a sparse class
representation operating application 140-1 as explained
herein. The sparse class representation operating application
140-1 may be embodied as software code such as data and/or
logic instructions (e.g., code stored in the memory or on
another computer readable medium such as a removable disk)
that supports processing functionality according to different
embodiments described herein. During operation of the com-
puter system 110, the processor 113 accesses the memory
system 112 via the interconnect 111 in order to launch, run,
execute, interpret or otherwise perform the logic instructions
of a sparse class representation operating application 140-1.
Execution of a sparse class representation operating applica-
tion 140-1 in this manner produces processing functionality
in the sparse class representation operating process 140-2. In
other words, the sparse class representation operating process
140-2 represents one or more portions or runtime instances of
a sparse class representation operating application 140-1 (or
the entire a sparse class representation operating application
140-1) performing or executing within or upon the processor
113 in the computerized device 110 at runtime.

It is noted that example configurations disclosed herein
include the sparse class representation operating application
140-1 itself (i.e., in the form of un-executed or non-perform-
ing logic instructions and/or data). The sparse class represen-
tation operating application 140-1 may be stored on a com-
puter readable medium (such as a floppy disk), hard disk,
electronic, magnetic, optical, or other computer readable
medium. A sparse class representation operating application
140-1 may also be stored in a memory system 112 such as in
firmware, read only memory (ROM), or, as in this example, as
executable code in, for example, Random Access Memory
(RAM). In addition to these embodiments, it should also be
noted that other embodiments herein include the execution of
a sparse class representation operating application 140-1 in
the processor 113 as the sparse class representation operating
process 140-2. Those skilled in the art will understand that the
computer system 110 may include other processes and/or
software and hardware components, such as an operating
system not shown in this example.

A display 130 need not be coupled directly to computer
system 110. For example, the sparse class representation
operating application 140-1 can be executed on a remotely
accessible computerized device via the network interface
115. In this instance, the graphical customer interface 160

10

15

20

25

30

40

45

50

55

60

65

12

may be displayed locally to a customer 108 of the remote
computer, and execution of the processing herein may be
client-server based.

During operation, processor 113 of computer system 100
accesses memory system 112 via the interconnect 111 in
order to launch, run, execute, interpret or otherwise perform
the logic instructions of the sparse class representation appli-
cation 140-1. Execution of sparse class representation appli-
cation 140-1 produces processing functionality in sparse
class representation process 140-2. In other words, the sparse
class representation process 140-2 represents one or more
portions of the sparse class representation application 140-1
(or the entire application) performing within or upon the
processor 113 in the computer system 100.

It should be noted that, in addition to the sparse class
representation process 140-2, embodiments herein include
the sparse class representation application 140-1 itself (i.e.,
the un-executed or non-performing logic instructions and/or
data). The sparse class representation application 140-1 can
be stored on a computer readable medium such as a floppy
disk, hard disk, or optical medium. The sparse class represen-
tation application 140-1 can also be stored in a memory type
system such as in firmware, read only memory (ROM), or, as
in this example, as executable code within the memory sys-
tem 112 (e.g., within Random Access Memory or RAM).

In addition to these embodiments, it should also be noted
that other embodiments herein include the execution of sparse
class representation application 140-1 in processor 113 as the
sparse class representation process 140-2. Those skilled in the
art will understand that the computer system 100 can include
other processes and/or software and hardware components,
such as an operating system that controls allocation and use of
hardware resources associated with the computer system 100.

The device(s) or computer systems that integrate with the
processor(s) may include, for example, a personal
computer(s), workstation(s) (e.g., Sun, HP), personal digital
assistant(s) (PDA(s)), handheld device(s) such as cellular
telephone(s), laptop(s), handheld computer(s), or another
device(s) capable of being integrated with a processor(s) that
may operate as provided herein. Accordingly, the devices
provided herein are not exhaustive and are provided for illus-
tration and not limitation.

References to “a microprocessor” and “a processor”, or
“the microprocessor’” and “the processor,” may be understood
to include one or more microprocessors that may communi-
cate in a stand-alone and/or a distributed environment(s), and
may thus be configured to communicate via wired or wireless
communications with other processors, where such one or
more processor may be configured to operate on one or more
processor-controlled devices that may be similar or different
devices. Use of such “microprocessor” or “processor’ termi-
nology may thus also be understood to include a central
processing unit, an arithmetic logic unit, an application-spe-
cific integrated circuit (IC), and/or a task engine, with such
examples provided for illustration and not limitation.

Furthermore, references to memory, unless otherwise
specified, may include one or more processor-readable and
accessible memory elements and/or components that may be
internal to the processor-controlled device, external to the
processor-controlled device, and/or may be accessed via a
wired or wireless network using a variety of communications
protocols, and unless otherwise specified, may be arranged to
include a combination of external and internal memory
devices, where such memory may be contiguous and/or par-
titioned based on the application. Accordingly, references to
a database may be understood to include one or more memory
associations, where such references may include commer-

US 9,189,735 B2

13

cially available database products (e.g., SQL, Informix,
Oracle) and also proprietary databases, and may also include
other structures for associating memory such as links, queues,
graphs, trees, with such structures provided for illustration
and not limitation.

References to a network, unless provided otherwise, may
include one or more intranets and/or the internet, as well as a
virtual network. References herein to microprocessor instruc-
tions or microprocessor-executable instructions, in accor-
dance with the above, may be understood to include program-
mable hardware.

Unless otherwise stated, use of the word “substantially”
may be construed to include a precise relationship, condition,
arrangement, orientation, and/or other characteristic, and
deviations thereof as understood by one of ordinary skill in
the art, to the extent that such deviations do not materially
affect the disclosed methods and systems.

Throughout the entirety of the present disclosure, use of the
articles “a” or “an” to modify a noun may be understood to be
used for convenience and to include one, or more than one of
the modified noun, unless otherwise specifically stated.

Elements, components, modules, and/or parts thereof that
are described and/or otherwise portrayed through the figures
to communicate with, be associated with, and/or be based on,
something else, may be understood to so communicate, be
associated with, and or be based on in a direct and/or indirect
manner, unless otherwise stipulated herein.

Although the methods and systems have been described
relative to a specific embodiment thereof, they are not so
limited. Obviously many modifications and variations may
become apparent in light of the above teachings. Many addi-
tional changes in the details, materials, and arrangement of
parts, herein described and illustrated, may be made by those
skilled in the art.

Having described preferred embodiments of the invention
it will now become apparent to those of ordinary skill in the
art that other embodiments incorporating these concepts may
be used. Additionally, the software included as part of the
invention may be embodied in a computer program product
that includes a computer useable medium. For example, such
a computer usable medium can include a readable memory
device, such as a hard drive device, a CD-ROM, a DVD-
ROM, or a computer diskette, having computer readable pro-
gram code segments stored thereon. The computer readable
medium can also include a communications link, either opti-
cal, wired, or wireless, having program code segments carried
thereon as digital or analog signals. Accordingly, it is submit-
ted that that the invention should not be limited to the
described embodiments but rather should be limited only by
the spirit and scope of the appended claims.

What is claimed is:

1. A computer-implemented method in which a computer
system performs operations comprising:

building a first model using a positive data set;

building a second model using a negative data set; and

using linear programming, distinguishing said first model

from said second model to determine a set of features
that make the object stand apart from rest of image data
for a filter for use as an image classifier and wherein said
using linear programming comprises using the minimi-
zation formula

argmin —(X7YB)
B

10

15

20

25

30

35

40

45

50

55

60

65

14

where X is a collection of vectors from a data source, Y is a
collection of features, and f} is a selector matrix of features in
X

using the determined features to classify an image.

2. The method of claim 1 wherein said using linear pro-
gramming further comprises using a first constraint

AZ I

as part of the minimization formula, where A is a tuning
parameter for reducing redundancy by inducing sparsity.

3. The method of claim 2 wherein said using linear pro-
gramming further comprises

using a second constraint O<f},<t,<1.

4. The method of claim 3 wherein said using a second
constraint further comprises

using p71=1.

5. The method of claim 1 further comprising using said
filter to recognize image content in an image.

6. The method of claim 2 wherein the choice of a value for
A is based on at least one of the group consisting of expected
clustering structure, inherent feature similarity, and a size of
the data set.

7. The method of claim 1 wherein said positive data set is
considered minimally supervised wherein said positive data
set includes images having the object wherein the object is not
identified in said images.

8. A non-transitory computer readable storage medium
having computer readable code thereon for sparse class rep-
resentation using linear programming, the medium including
instructions in which a computer system performs operations
comprising:

building a first model using a positive data set;

building a second model using a negative data set; and

using linear programming, distinguishing said first model

from said second model to determine a set of features
that make the object stand apart from rest of image data
for a filter for use as an image classifier and wherein said
using linear programming comprises using the minimi-
zation formula

argmin —{(X7 YB)
B

where X is a collection of vectors from a data source, Y is a
collection of features, and f} is a selector matrix of features in
X

using the determined features to classify an image.

9. The computer readable storage medium of claim 8 fur-
ther comprising instructions wherein said using linear pro-
gramming further comprises

using a first constraint

/\Z I

i

as part of the minimization formula, where A is a tuning
parameter for reducing redundancy by inducing sparsity.

10. The computer readable storage medium of claim 9
further comprising instructions wherein said using linear pro-
gramming further comprises using a second constraint
OsBijstisl.

US 9,189,735 B2

15

11. The computer readable storage medium of claim 10
further comprising instructions wherein said using a second
constraint further comprises using f71=1.

12. The computer readable storage medium of claim 8
further comprising further comprising instructions for using
said filter to recognize image content in an image.

13. The computer readable storage medium of claim 9
further comprising instructions wherein the choice of a value
for A is based on at least one of the group consisting of
expected clustering structure, inherent feature similarity, and
a size of the data set.

14. The computer readable storage medium of claim 8
further comprising instructions wherein said positive data set
is considered minimally supervised wherein said positive
data set includes images having the object wherein the object
is not identified in said images.

15. A computer system comprising:

amemory;

a processor;

a communications interface;

an interconnection mechanism coupling the memory, the

processor and the communications interface; and
wherein the memory is encoded with an application pro-

viding sparse class representation using linear program-

ming, that when performed on the processor, provides a

process for processing information, the process causing

the computer system to perform the operations of:
building a first model using a positive data set;

building a second model using a negative data set; and

using linear programming, distinguishing said first model

from said second model to determine a set of features
that make the object stand apart from rest of image data
for a filter for use as an image classifier and wherein said
using linear programming comprises using the minimi-
zation formula

10

15

20

25

16

argmin —{(X7 YB)
B

where X is a collection of vectors from a data source, Y is a
collection of features, and f} is a selector matrix of features in
X

using the determined features to classify an image.

16. The computer system of claim 15 wherein said using
linear programming further comprises using a first constraint

/\Z I

i

as part of the minimization formula, where A is a tuning
parameter for reducing redundancy by inducing sparsity.

17. The computer system of claim 16 wherein said using
linear programming further comprises using a second con-
straint 0=f,=<t,;<1 and B71=1.

18. The method of claim 1 wherein said salient features
comprises features that make an object stand out from a
remainder of an image.

19. The computer readable medium of claim 8 wherein said
salient features comprises features that make an object stand
out from a remainder of an image.

20. The computer system of claim 15 wherein said salient
features comprises features that make an object stand out
from a remainder of an image.

#* #* #* #* #*

